Almost sure convergence and the strong law of large numbers

$\newcommand{\Om}{\Omega}\newcommand{\F}{\mathscr F}\newcommand{\one}{\mathbf 1}\newcommand{\R}{\mathbb R}\newcommand{\e}{\varepsilon}\newcommand{\E}{\operatorname{E}}\newcommand{\Var}{\operatorname{Var}}\newcommand{\convas}{\stackrel{\text{a.s.}}{\to}}\newcommand{\w}{\omega}\newcommand{\N}{\mathbb N}\newcommand{\convp}{\stackrel{\text{p}}{\to}}$In this post I’m going to introduce almost sure convergence for sequences of random variables, compare…

Continue Reading →

Correlated Discrete Random Variables

$\newcommand{\bern}{\text{Bern}}$$\newcommand{\vp}{\varphi}$$\newcommand{\e}{\varepsilon}$$\newcommand{\P}{\mathcal P}$$\newcommand{\Cov}{\text{Cov}}$$\newcommand{\E}{\text{E}}$$\newcommand{\one}{\mathbf 1}$$\newcommand{\s}{\mathbf s}$$\newcommand{\Disc}{\text{Disc}}$In this post I’m going to explore correlations between finitely-supported discrete variables. Bernoulli case I’ll begin with…

Continue Reading →

Ridge regression as a constrained optimization

$\newcommand{\hb}{\hat\beta}$$\newcommand{\hbl}{\hat\beta_\lambda}$$\newcommand{\tb}{\tilde \beta}$$\newcommand{\L}{\mathcal L}$$\newcommand{\l}{\lambda}$$\newcommand{\e}{\varepsilon}$$\newcommand{\0}{\mathbf 0}$$\newcommand{\Lam}{\Lambda}$$\newcommand{\g}{\gamma}$$\newcommand{\D}{\mathcal D}$$\newcommand{\ht}{\hat\theta}$$\newcommand{\a}{\alpha}$In this post I’m going to explore ridge regression as a constrained optimization, and I’ll do…

Continue Reading →