Ridge regression as a constrained optimization

$\newcommand{\hb}{\hat\beta}$$\newcommand{\hbl}{\hat\beta_\lambda}$$\newcommand{\tb}{\tilde \beta}$$\newcommand{\L}{\mathcal L}$$\newcommand{\l}{\lambda}$$\newcommand{\e}{\varepsilon}$$\newcommand{\0}{\mathbf 0}$$\newcommand{\Lam}{\Lambda}$$\newcommand{\g}{\gamma}$$\newcommand{\D}{\mathcal D}$$\newcommand{\ht}{\hat\theta}$$\newcommand{\a}{\alpha}$In this post I’m going to explore ridge regression as a constrained optimization, and I’ll do…

Continue Reading →

Comparing a mixed model with a ridge regression

$\newcommand{\var}{\text{Var}}$$\newcommand{\cov}{\text{Cov}}$$\newcommand{\E}{\text{E}}$$\newcommand{\one}{\mathbf 1}$$\newcommand{\0}{\mathbf 0}$$\newcommand{\a}{\alpha}$$\newcommand{\l}{\lambda}$$\newcommand{\s}{\sigma}$$\newcommand{\e}{\varepsilon}$$\newcommand{\t}{\theta}$In this post I’m going to consider a linear model of the form $y = \mu\one + Z\a…

Continue Reading →